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Summary

The term of orthogonality is frequently used to describe some properties of
experimental designs or referring to uncorrelated random variables. The spectrum of
notions connected with the orthogonality concept in the theory of experimental designs
contains such terms as geometrical orthogonality (Tjur, 1984), or strict and weak
orthogonalities (Khatri and Shah, 1986). In all these cases the common notion of
orthogonality was modified to describe some regularity in experimental plans. In this
paper the geometrical interpretations of these properties are exhibited.

1. Decompositions of subspaces and perpendicularity

For a given matrix A, let R(A) and R*(A) be the range of A and the orthogonal
complement of the R(A), respectively. Moreover, let P, denote the orthogonal
projector on R(A) and Q, = I — P, the orthogonal projector on R*(A). Further,
we recall that two subspaces R(A) and R(B) are said to be orthogonal if
RA)CR*(B) or RB)< R*A). Then we write R(A) L R(B).

The following lemma gives a basic decomposition which will be used in the
sequel.

Lemma 1. For any two subspaces R(A) and R(B)
R(A) = {R(A) n R(B)} B R(PAQp) , 1)

where the symbol ® is used to indicate the sum of orthogonal subspaces.
The proof of this result is postponed to the Appendix. In view of (1) the
subspace R(P,Qpg) is the orthogonal complement of R(A) N R(B) in R(A). If this
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decomposition is applied to the subspaces R(A) and R(B) in the union
R(A : B) = R(A) + R(B), then we obtain

R(A : B) = {R(A) N R(B)} 8 {R(P,Qp) ® R(PpQ,)} , ()

where the symbol @ indicates that the summands are disjoint subspaces. The
property follows, since u=P,Qpa =PyQ,b forsome a andb, implies QzP,Qpa
= QpPpQab = 0, which gives u = 0. Thus the only common vector of subspaces
RPAQp) and R(P3Q,) is a zero vector.

The decomposition (2) forms the natural base for the concept of perpendicu-
larity. Two subspaces are said to be perpendicular, in symbols R(A) I[ R(B), if
the subspaces R(P,Qp) and R(P3Q,) are orthogonal, i.e. R(P,Qp) L R(P3Q,).
This definition is in full agreement with the geometrical intuition of perpendicu-
larity, and means the orthogonality of such subspaces of R(A) and of R(B) which
are orthogonal complements to their common part R(T) = R(A) N R(B). Moreover,
this property is closely connected with commutativity of orthogonal projectors.

Lemma 2. Two subspaces R(A) and R(B) are perpendicular if and only if
PPy =PyP, . 3)

The proof of this result is also shown in the Appendix. The commutativity of
orthogonal projectors plays a key role in many problems. A comprehensive
collection of different commutativity criteria of projectors P, and Py with many
applications to linear statistical inference can be found in Baksalary (1987), and
Nordstrém and von Rosen (1987). The subspaces corresponding to commuting
projectors are called commuting subspaces (see Birkhoff and von Neumann,
1936). In statistical literature some other terms are also used. Mostly they refer
to the concept of orthogonality. For instance, Tjur (1984) in the context of the
analysis of variance in linear models, have termed this property as geometrical
orthogonality. It seems, however, that the term of perpendicularity is more
relevant here as reflecting precisely the geometrical property of subspaces in-
volved.

2. Perpendicularity in experimental designs
2.1. Block designs

The block design is an experiment, in which a given set of v treatments is
distributed over units forming a set of b blocks. The sizes of blocks as well as
the replicates of treatments are arbitrary. The assignment of treatments to units,
and units to blocks, is commonly described with the use of two binary matrices
A" and D’ of order nxv and nxb, respectively, where n denotes the number of
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units in the experiment. The model for the expectation of the vector of observa-
tions y € R” can be expressed as

E(y)e R(A': D) .

We assume, as usually, that the dispersion matrix of y is proportional to the
unit matrix of order n, ie., D(y) = o?l, 6®> 0. In that way there is a direct
correspondence between orthogonality, defined by the standard inner product,
and the concept of uncorrelated random variables.

The block design is called orthogonal if AQ;;Q,D' =0 or, equivalently,

N=NK'NR!N , (4)

where K=DD', R =AA’, and N = AD’ is the incidence matrix. The condition (4)
was formulated by Chakrabarti (1962). It ensures some simplicity of the analysis
of the block experiment. On the other way, the question arises what is geometrical
interpretation of the property (4). To this aim observe that (4) can equivalently
be written as

AD = AP, P,D' , (5)

since for any full column rank A, P, = A(A’A)_IA’. But (5) is equivalent to the
commutativity of Py, and P, which takes place if and only if the subspaces
R(A’) and R(D’) are perpendicular, i.e. R(D') ][ R(A"). In result the orthogonal
block design is a design having the treatment subspace, R(A’), perpendicular to
the block subspace, R(D).

2.2. Row and column. designs

The row and column design is defined when a given set of v treatments is
allocated on the units arranged in a given number, say b, of rows and, simul-
taneously, in a given number, say b,, of columns. Rows and columns form a
desired structure for eliminating two directions of heterogeneity in the set of
experimental units. The space of the expectation of an observation vector
vy € R" is now spanned by three binary matrices — a matrix for treatments,A’, a
matrix for rows, D, and a matrix for columns D). In consequence, we have

E(y)e R(A": D}: Dj) .

To complete the model, let us assume that the dispersion matrix of y, D(y), is
proportional fo the nxn identity matrix, as in the case of block designs.
If in the row and column design

CovD,Q v .1py¥)» DoQ v py¥) =0, (©)
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then it is called orthogonal (see Chakrabarti, 1962) or weakly orthogonal (see
Khatri and Shah, 1986), Following Siatkowski (1993, Theorem 2.2), the condition
(6) can be rewritten equivalently as

PAPB = PBPA s

where A = Q, D} and B = Q, D). Thus the row and column design is weakly
orthogonal if and only if

R(Q,D) L R(Q,DY) . (M

If the condition (7) can be replaced by the stronger condition of orthogonality of
the subspaces involved, i.e. by the condition

R(QyDY) L R(QaDY) , (3)

then the row and column design is called strongly orthogonal (see Khatri and
Shah, 1986). In the view of the discussion above the conditions (7) and (8) have
clear geometrical interpretation. It is seen directly when the space of the expec-
tation of y is decomposed to the form

R(A":D: Dy = R(A") B {R(Q,D") + R(QyDY} .

Since R{Q,(Dj: DY} = R(Q,D)) + R(Q,D%) represents the subspace of
R(A': D;: D)) after eliminating treatments, the weak orthogonality of row and
column design geometrically means the perpendicularity of the subspace of rows
to the subspace of columns, both adjusted with respect to the subspace of treat-
ments. When these two subspaces are perpendicular and disjoint, which is
equivalent to their orthogonality, then the design pussesses strong orthogonality
property. In this light, it seems justified to link the concept of perpendicularity
with a design satisfying (7), and reserve the term of orthogonality for a design
satisfying condition (8). This observation can be simply extended on the multi-
factor designs by adopting the approach of Khatri and Shah (1986).

2.3 Orthogonality in the analysis of variance

Finally, let us consider the general linear model in a parameter-free approach
formulation. For the vector y of n observations we then have

E(y)=0€QcR", D(y)=0oT,

where Q is a proper subspace of R". In this general framework, Darroch and
Silvey (1963) have considered the problem of testing the hypotheses
H;:0cw, i=12,.,k where w; are some subspaces of Q. The experimental
design such that
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0fNQLofNQ, i,j=12,.k i=j, 9

is called orthogonal. The condition (9) ensures desirable properties, when the
problem of testing hypotheses H;: 0 € w;, ¢ = 1,2,...,k, is regarded. In the light of
the equality R*(C) n R(A) = R(Q ¢ A) fulfilled for any R(C) ¢ R(A), the condition
(9) can be replaced by

RQX) LRQX), i,j=12,..k i=j, (10)

where X is such a matrix that R(X) = Q and Q; is the orthogonal projector on the
orthogonal complement of w;. Since w; € Q, fori=1,2, ..., %, then (10) is equivalent
to the commutativity of projectors P,P; = P,P; for i,j=1,2,...,k, i=j, and thus
the experimental design is orthogonal if and only if the set of hypotheses
H;: 0w, i=12,..,%k, is related to pairwise perpendicular linear subspaces, i.e.
if and only it w; [l w; i,j =1,2,...,k, i=].

Appendix

Proof of Lemma 1. Let R(T)=R(A)n R(B). Since R(P,) = R(A) and
R(T) € R(A), the sum on the right hand side of (1) is contained in R(A). To show
the reverse inclusion, we use the orthogonal projectors on R(S) = R(A : B) and on
R(T), given by Ben-Israel and Greville (1974, p.198,199) (see also Anderson and

Duffin, 1969, or Rao and Mitra, 1971, p. 189). These projectors have the following
forms

Pg = KK' , (AD
PT = OPAK+PB = 2PBK+PA 3 (A2)

where K" is the Moore-Penrose inverse of K = P, + Pj;. In view of (A1), (A2) and
the relation R(A) € R(S), we have

A =PgA = (P, + PHK'A = P,K*A + PLK'P,A
= PAK'A - PAK'PA + 2PK'PAA
=P,K'A - P,P,K'P,A + 2P K'PAA
= PAQpK'A + 2PK'PAA |

which implies that R(A) € R(T) + R(P,Qp). Finally observe that if u € R(T), then
u=Pyu=Pgu and thus u'P,Qz=uPyQp=0, which shows that
R(T) C R*(P,Qp), i.e. R(T) L R(PAQy). O
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Proof of Lemma 2. The condition (3) is equivalent with the equation
PPy = PyPgP,Pp (A3)

by the use of results given, with the other 44 equivalent conditions, by Baksalary
(1987). Thus the proof reduces to showing that (3) and (A3) are equivalent with
perpendicularity of R(A) and R(B). Consider the product W = QzP,PQ,. If the
condition (3) is fulfilled, then W =0 and R(P,Qg) L R(PpQ,) i.e. R(A) Il R(B).
Conversely, if W=0, then P PyQ, =PpPPpQs and, in consequence,
P,Pg - P,PgP, = PpPsPp - PRPAPpPA. On account of symmetry of PAPpP,
and PypP,Pp, the equality above implies the symmetry of P,Pp + PpPAPgPa.
Thus P,Pp + PgPAPpPA = PPy + PAPpPAPy, or, equivalently,

PAPB - PAPBPAPB = PBPA - PBPAPBPA (= F) .

But the product FF' is a zero matrix, which implies (A3). O
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O prostopadiosci w ukladach eksperymentalnych

Streszczenie

Ortogonalnoéé jest pojeciem czesto uzywanym do opisu wlasnosci uktadéw
do$wiadezalnych lub odwolyjacym sie do nieskorelowania zmiennych losowych. W
teorii ukladéw eksperymentalnych, wsréd pojeé nawiazujacych do ortogonalnosei
spotka¢ mozna takie okreslenia jak ortogonalnoéé geometryczna (Tjur, 1984) lub
ortogonalno$é écista albo staba (Khatri i Shah, 1986). W kazdym z tych przypadkéw
zwykla ortogonalnosé stosownie zmodyfikowano w celu podkreslenia pewnych
szezegblnych wlasnosci plandéw eksperymentalnych. W prezentowanej pracy wlasnosci
te uwypuklono nadajac im w pelni geometryczng interpretacje.

Stowa kluczowe: przestrzenie przemienne, przestrzenie prostopadle, uklady ortogonalne.



